Yeast ORFan Gene Project: Module 1 Worksheet | BASIC | | |--|--| | INFORMATION | | | Assigned Gene Systematic Name: | | | SGD Description of Known Information about your Protein | | | | | | | | | | | | DNA Coordinates: | | | Chromosome #: | | | Gene Size Calculation: | | | DNA Sequence: | | | | | | | | | | | | Protein length (aa): | | | | | Does this length make sense with your calculated DNA sequence length? Why or Why not? | Molecular Weight (Da): | | |---|---| | | | | Isoelectric Point (pI): | | | isocicette i ome (pr). | | | | | | Protein Sequence: | | | SEQUENCE-BASED | | | SIMILARITY | | | For the TOP -scoring match in NR Record : | | | <u> </u> | | | Gene Name: | | | | | | Organism: | | | | | | | | | Alignment Length: | | | | | | Score: | | | Score. | | | | | | E-value: | | | | _ | | | | Copy and past the alignment of the query and top-scoring BLAST hit: | Comment on the E-value and compare the lengths of sequences: For the TOP-scoring match in UniProtKB/Swiss-Prot | | |--|-------------------| | Gene Name: | | | Organism: | | | Alignment Length: | | | Score: | | | E-value: | | | Copy and past the alignment of the query and top-se | coring BLAST hit: | | Comment on the E-value and compare the lengths of the query and subjects (matching) sequences: | |---| | | | | | | | | | As needed, copy the above headers and insert a duplicate copy to include additional data, for instance if you get 2 relevant hits in your NR BLAST search, copy those header lines, rename to 2 nd hit, and fill in the relevant data. | | | | | | | | |